5 years ago

Constructing Three-Dimensional Honeycombed Graphene/Silicon Skeletons for High-Performance Li-Ion Batteries

Constructing Three-Dimensional Honeycombed Graphene/Silicon Skeletons for High-Performance Li-Ion Batteries
Yaqun Huang, Yunhui Huang, Xiaoxiao Liu, Peng Chang, Qianjin Zhao, Xianluo Hu
Silicon has been considered to be an attractive high-capacity anode material for next-generation lithium-ion batteries (LIBs). Currently, the commercial application of Si-based anodes is still restricted by its limited cycle life and rate capacity, which could be ascribed to the colossal volumetric change during the cycling process and poor electronic conductivity. We report the design of a unique Si-based nanocomposite of three-dimensional (3D) honeycombed graphene aerogel and the reduced graphene oxide sheets preprotected silicon secondary particles (SiNPs@rGO1). Through simple electrostatic self-assembly and hydrothermal processes, SiNPs are able to be wrapped with rGO1 to form reunited SiNPs@rGO1, and embedded into the backbone of 3D graphene honeycomb (rGO2). Such an intriguing design (namely, SiNPs@rGO1/rGO2) not only provides a conductive skeleton to improve the electrical conductivity, but also possesses abundant void spaces to accommodate the dramatic volume changes of SiNPs. Meanwhile, the outer rGO1 coats protect the inner SiNPs away from the electrolyte and prevent the destruction of the solid electrolyte interphase (SEI) film. As a result, the 3D honeycombed architecture achieves a high cyclability and excellent rate capability.

Publisher URL: http://dx.doi.org/10.1021/acsami.7b09169

DOI: 10.1021/acsami.7b09169

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.