3 years ago

Coexistence of High Magnetization and Anisotropy with Non-monotonic Particle Size Effect in Ferromagnetic PrMnO3 Nanoparticles

Coexistence of High Magnetization and Anisotropy with Non-monotonic Particle Size Effect in Ferromagnetic PrMnO3 Nanoparticles
Anustup Sadhu, Sayan Bhattacharyya, Hemant G. Salunke
Instances of the coexistence of high ferromagnetic magnetization with large anisotropy are scarce in the rare-earth manganite family. In manganites, high magnetizations are compromised with small coercivity and vice versa. Using nonaqueous sol–gel techniques, the undoped PrMnO3 nanoparticles with oxygen nonstoichiometry were rendered with exceptional ferromagnetic character. While ∼40 nm sized nanoparticles had magnetization of 84 emu/g and coercivity of 885 Oe with 50 kOe sweeping field, the bulk 2 μm sized particles showed a magnetization of 51 emu/g albeit with a higher coercivity of 2000 Oe. These parameters are so far the highest among manganite systems with similarly sized particles. The competition between the ferromagnetic and antiferromagnetic phases both at the particle core and at the grain boundaries resulted in a non-monotonous trend of magnetic properties between 20, 40, and 2 μm particles. The sudden increase of coercivity toward lower temperatures was a result of the freezing of random spins at the surface of the strongly interacting nanoparticles which also increased the magnetic anisotropy. These results are of prime significance since the coexistence of such a large magnetization with high coercivity was rarely observed in pristine or doped manganites.

Publisher URL: http://dx.doi.org/10.1021/acs.jpcc.7b07145

DOI: 10.1021/acs.jpcc.7b07145

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.