5 years ago

Highly Effective Solid Electrolyte Interphase-Forming Electrolyte Additive Enabling High Voltage Lithium-Ion Batteries

Highly Effective Solid Electrolyte Interphase-Forming Electrolyte Additive Enabling High Voltage Lithium-Ion Batteries
Frank Glorius, Johannes Kasnatscheew, Xia Cao, Stephan Röser, Ralf Wagner, Martin Winter, Lukas Ibing, Andreas Lerchen
The electrochemical and thermal stabilities of commonly used LiPF6/organic carbonate-based electrolytes are still a bottleneck for the development of high energy density lithium-ion batteries (LIBs) operating at elevated cell voltage and elevated temperature. The use of intrinsic electrochemically stable electrolyte solvents, e.g. sulfones or dinitriles, has been reported as one approach to enable high voltage LIBs. However, the major challenge of these solvents is related to their poor reductive stability and lack of solid electrolyte interphase (SEI)-forming ability on the graphite electrode. Here, 3-methyl-1,4,2-dioxazol-5-one (MDO) is synthesized and investigated as new highly effective SEI-forming electrolyte additive which can sufficiently suppress electrolyte reduction and graphite exfoliation in propylene carbonate (PC)-based electrolytes. With the addition of only 2 wt % MDO, LiNi0.5Mn0.3Co0.2O2 (NMC532)/graphite full cells containing a 1 M LiPF6 in PC electrolyte reach a cycle life of more than 450 cycles while still having a capacity retention of 80%. In addition, MDO has proven to be oxidatively stable until potentials as high as 5.3 V vs Li/Li+. Further development of MDO and its derivatives as electrolyte additives is a step forward to high voltage stable electrolyte formulations based on alternative electrolyte solvents and high energy density LIBs.

Publisher URL: http://dx.doi.org/10.1021/acs.chemmater.7b01977

DOI: 10.1021/acs.chemmater.7b01977

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.