4 years ago

Supported Bimetallic NiFe Nanoparticles through Colloid Synthesis for Improved Dry Reforming Performance

Supported Bimetallic NiFe Nanoparticles through Colloid Synthesis for Improved Dry Reforming Performance
Frank Krumeich, Kim Larmier, Tigran Margossian, Christophe Copéret, Christoph Müller, Sung Min Kim
The conversion of methane and carbon dioxide into a synthesis gas, the so-called dry reforming of methane (DRM), suffers from a stability issue caused by coke formation at the surface of the Ni-based catalysts. Using a colloidal approach, we demonstrate that supported 3–4 nm bimetallic NiFe nanoparticles with a Ni/Fe ratio of 3 have an enhanced stability compared to the corresponding pure Ni-based catalyst and a higher activity compared to conventional NiFe catalysts. The active sites for DRM are associated with Ni0, while FeO, observed by operando XAS under DRM conditions, allows for an effective decoking of the metal centers.

Publisher URL: http://dx.doi.org/10.1021/acscatal.7b02091

DOI: 10.1021/acscatal.7b02091

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.