4 years ago

Dynamics at a Peptide–TiO2 Anatase (101) Interface

Dynamics at a Peptide–TiO2 Anatase (101) Interface
Caterina Arcangeli, Marco Polimeni, Jeremy C. Smith, Loukas Petridis
The interface between biological matter and inorganic materials is a widely investigated research topic due to possible applications in biomedicine and nanotechnology. In this context, the molecular level adsorption mechanism that drives specific recognition between small peptide sequences and inorganic surfaces represents an important topic likely to provide much information useful for designing bioderived materials. Here, we investigate the dynamics at the interface between a Ti-binding peptide sequence (AMRKLPDAPGMHC) and a TiO2 anatase surface by using molecular dynamics (MD) simulations. In the simulations the adsorption mechanism is characterized by diffusion of the peptide from the bulk water phase toward the TiO2 surface, followed by the anchoring of the peptide to the surface. The anchoring is mediated by the interfacial water layers by means of the charged groups of the side chains of the peptide. The peptide samples anchored and dissociated states from the surface and its conformation is not affected by the surface when anchored.

Publisher URL: http://dx.doi.org/10.1021/acs.jpcb.7b04707

DOI: 10.1021/acs.jpcb.7b04707

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.