5 years ago

Oxygen vacancy-rich 2D/2D BiOCl-g-C3N4 ultrathin heterostructure nanosheets for enhanced visible-light-driven photocatalytic activity in environmental remediation

Oxygen vacancy-rich 2D/2D BiOCl-g-C3N4 ultrathin heterostructure nanosheets for enhanced visible-light-driven photocatalytic activity in environmental remediation
Photocatalytic degradation has been unearthed as a promising strategy for environmental remediation, and the calling is endless for more efficient photocatalytic system. In this study, a novel oxygen vacancy-rich two-dimensional/two-dimensional (2D/2D) BiOCl-g-C3N4 ultrathin heterostructure nanosheet (CN-BC) is successfully prepared by a facile solvothermal method for degradation of non-dye organic contaminants. HRTEM observes the formation of heterojunction, while ESR and XPS unveil the distinct oxygen vacancy concentrations. Density functional calculations reveal that the introduction of oxygen vacancies (OVs) brings a new defect level, resulting in the increased photoabsorption. Under visible light irradiation, the OVs-rich optimum ratio of CN-BC (50CN-50BC) Exhibits 95% removal efficiency of 4-chlorophenol within 2h, which is about 12.5, 5.3 and 3.4 times as that of pure BiOCl, g-C3N4 and OVs-poor heterostructure, respectively. The photocatalytic mechanism of OVs-rich 50CN-50BC is also revealed, suggesting that the synergistic effect between 2D/2D heterojunction and oxygen vacancies greatly promotes visible-light photoabsorption and photoinduced carrier separation efficiency with a prolonged lifetime, which is confirmed by multiple optical and electrochemical analyses, including DRS, steady-state photoluminescence spectra, electrochemical impedance spectroscopy, photocurrent response and time-resolved fluorescence spectra. This study could bring new opportunities for the rational design of highly efficient photocatalysts by combining 2D/2D heterojunctions with oxygen vacancies in environmental remediation.

Publisher URL: www.sciencedirect.com/science

DOI: S0926337317307853

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.