3 years ago

Mechanism for reversible CO/CO2 electrochemical conversion on a patterned nickel electrode

Mechanism for reversible CO/CO2 electrochemical conversion on a patterned nickel electrode
The patterned Ni negative electrode on single-crystal YSZ in CO-CO2 atmosphere is investigated in both the solid oxide fuel cell (SOFC) and solid oxide electrolysis cell (SOEC) modes. The effects of the temperature T, partial pressure of CO and CO2 (pCO and pCO2) on the electrochemical performance are measured to obtain the intrinsic kinetic parameters by natural logarithm linear fitting. The strong dependency of surface diffusion resistance on pCO implies that surface diffusion could be related to CO(Ni). The electrochemical performance had an obviously positive correlation with T and pCO. The limitation of CO2 adsorption leads to a weak dependency of polarization on pCO2. The electrochemical performance of SOEC mode in the atmosphere without CO is 1.21 times higher than that in the atmosphere without CO2, which implies that CO electrochemical reduction could be more significant than CO2 electrochemical reduction in the patterned Ni electrode. An analytical calculation is performed for the speculation of rate-limiting steps. In the SOFC mode, CO oxidation into CO2 is speculated to be rate-determining, besides, adsorbed carbon oxidation into CO could be also non-ignorable. In the SOEC mode, CO reduction into carbon could be more probably the major electrochemical reaction on the pure Ni surface.

Publisher URL: www.sciencedirect.com/science

DOI: S0378775317311783

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.