3 years ago

Power generation by a pH-regulated conical nanopore through reverse electrodialysis

Power generation by a pH-regulated conical nanopore through reverse electrodialysis
To assess the possibility of energy harvesting through reverse electrodialysis (RED), we consider the electrokinetic behavior of the ion transport in a pH-regulated conical nanopore connecting two large reservoirs having different bulk salt concentrations, taking account of the effect of osmotic flow. In particular, we examine the influence of the ion diffusion direction, the solution pH, and the bulk concentration ratio on that behavior in detail, and discuss the underlying mechanisms. We show that the geometrically asymmetric nature of the nanopore yields profound and interesting phenomena arising mainly from the distribution of ions in its interior. Assuming a single polymeric nanopore, a power density of 18.2 W/m2 can be generated. We show that the present system has the potential of serving as an ion-selective and a salinity gradient power generation device. The maximum power efficiency which is based on assuming a linear ionic distribution in nanopore can yield appreciable deviation, especially if pH deviates significantly from 7, where the presence of H+ and OH needs be considered.

Publisher URL: www.sciencedirect.com/science

DOI: S0378775317311813

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.