5 years ago

In situ synthesis of a Prussian blue nanoparticles/graphdiyne oxide nanocomposite with high stability and electrocatalytic activity

In situ synthesis of a Prussian blue nanoparticles/graphdiyne oxide nanocomposite with high stability and electrocatalytic activity
Herein we report an in situ synthesis of Prussian blue nanoparticles (PB) on graphdiyne oxide (GDYO) which acts as an excellent substrate. The hybrid was then used as an electrode with high electrochemical catalytic activity towards hydrogen peroxide. The PB/GDYO hybrid was prepared by simply adding FeCl3 to GDYO solution, and then mixing with Fe(CN)6 3 at room temperature. The GDYO was able to anchor PB in nanoparticle form and stabilize it in neutral and weakly basic solutions. The hybrid was investigated by transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy and electrochemical measurements. The PB/GDYO hybrid showed high electrochemical catalytic activity and stability for the detection of hydrogen peroxide.

Publisher URL: www.sciencedirect.com/science

DOI: S1388248117302540

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.