5 years ago

An O2 Self-Supplementing and Reactive-Oxygen-Species-Circulating Amplified Nanoplatform via H2O/H2O2 Splitting for Tumor Imaging and Photodynamic Therapy

An O2 Self-Supplementing and Reactive-Oxygen-Species-Circulating Amplified Nanoplatform via H2O/H2O2 Splitting for Tumor Imaging and Photodynamic Therapy
Wen-Xiu Qiu, Li-Han Liu, Wu-Yang Yu, Xian-Zheng Zhang, Chi Zhang, Wei-Hai Chen
Conventional photodynamic therapy (PDT) has limited applications in clinical cancer therapy due to the insufficient O2 supply, inefficient reactive oxygen species (ROS) generation, and low penetration depth of light. In this work, a multifunctional nanoplatform, upconversion nanoparticles (UCNPs)@TiO2@MnO2 core/shell/sheet nanocomposites (UTMs), is designed and constructed to overcome these drawbacks by generating O2 in situ, amplifying the content of singlet oxygen (1O2) and hydroxyl radical (•OH) via water-splitting, and utilizing 980 nm near-infrared (NIR) light to increase penetration depth. Once UTMs are accumulated at tumor site, intracellular H2O2 is catalyzed by MnO2 nanosheets to generate O2 for improving oxygen-dependent PDT. Simultaneously, with the decomposition of MnO2 nanosheets and 980 nm NIR irradiation, UCNPs can efficiently convert NIR to ultraviolet light to activate TiO2 and generate toxic ROS for deep tumor therapy. In addition, UCNPs and decomposed Mn2+ can be used for further upconversion luminescence and magnetic resonance imaging in tumor site. Both in vitro and in vivo experiments demonstrate that this nanoplatform can significantly improve PDT efficiency with tumor imaging capability, which will find great potential in the fight against tumor. Enhanced and amplified photodynamic therapy: A multifunctional nanoplatform, UCNPs@TiO2@MnO2 core/shell/sheet nanocomposites, is designed to overcome the drawbacks of photodynamic therapy by generating O2 in situ, amplifying the content of singlet oxygen (1O2) and hydroxyl radical (•OH) via water-splitting, and utilizing 980 nm near-infrared light to increase penetration depth, which significantly improves PDT efficiency as well as reduces the side effects.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/adfm.201700626

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.