5 years ago

Alternating 5,5-Dimethylcyclopentadiene and Diketopyrrolopyrrole Copolymer Prepared at Room Temperature for High Performance Organic Thin-Film Transistors

Alternating 5,5-Dimethylcyclopentadiene and Diketopyrrolopyrrole Copolymer Prepared at Room Temperature for High Performance Organic Thin-Film Transistors
Agostino Pietrangelo, Christopher R. McNeill, Martin Heeney, Eliot Gann, Lei Chen, Yang Han, Thomas D. Anthopoulos, Anthony S. R. Chesman, Zhuping Fei
We report that the inclusion of nonaromatic 5,5-dimethylcyclopentadiene monomer into a conjugated backbone is an attractive strategy to high performance semiconducting polymers. The use of this monomer enables a room temperature Suzuki copolymerization with a diketopyrrolopyrrole comonomer to afford a highly soluble, high molecular weight material. The resulting low band gap polymer exhibits excellent photo and thermal stability, and despite a large π–π stacking distance of 4.26 Å, it demonstrates excellent performance in thin-film transistor devices.

Publisher URL: http://dx.doi.org/10.1021/jacs.7b03279

DOI: 10.1021/jacs.7b03279

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.