4 years ago

Quantum-Enhanced Capture of Photons Using Optical Ratchet States

Quantum-Enhanced Capture of Photons Using Optical Ratchet States
B. W. Lovett, K. D. B. Higgins, E. M. Gauger
Natural and artificial light harvesting systems often operate in a regime where the flux of photons is relatively low. Besides absorbing as many photons as possible, it is paramount to prevent excitons from annihilation via photon re-emission until they have undergone an irreversible energy conversion process. Taking inspiration from photosynthetic antenna structures, we here consider ringlike systems and introduce a class of states we call ratchets: excited states capable of absorbing but not emitting light. This allows our antennae to absorb further photons while retaining the excitations from those that have already been captured. Simulations for a ring of four sites reveal a peak power enhancement by up to a factor of 35 owing to a combination of ratcheting and the prevention of emission through dark-state population. In the slow extraction limit, the achievable power enhancement due to ratcheting alone exceeds 20%.

Publisher URL: http://dx.doi.org/10.1021/acs.jpcc.7b07138

DOI: 10.1021/acs.jpcc.7b07138

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.