4 years ago

Identification of sortase substrates by specificity profiling

Identification of sortase substrates by specificity profiling
Sortases catalyze the attachment of surface proteins to the peptidoglycan layer of gram-positive bacteria and further represent powerful tools of protein chemistry. During catalysis sortases cleave a donor substrate containing the LPxTG (x=any amino acid) sorting motif under formation of an enzyme-bound thioester and ligate this intermediate to an acceptor protein containing an N-terminal glycine residue. In addition to the well-established sortase A of Staphylococcus aureus several homologs of this enzyme have been identified in the genomes of gram-positive bacteria. We have profiled the specificity of seven sortases of Staphylococci and Streptococci origin and observed that sortases of the latter class displayed a more relaxed specificity for donor and acceptor substrates than their Staphylococci counterparts. Streptococci sortases prefer an LPKLG donor substrate sequence compared to the canonical sorting motif LPKTG. These findings might facilitate the use of Streptococci sortases as tools of protein chemistry.

Publisher URL: www.sciencedirect.com/science

DOI: S0968089617307381

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.