Cu metal embedded in oxidized matrix catalyst to promote CO2 activation and CO dimerization for electrochemical reduction of CO2 [Applied Physical Sciences]
We propose and validate with quantum mechanics methods a unique catalyst for electrochemical reduction of CO2 (CO2RR) in which selectivity and activity of CO and C2 products are both enhanced at the borders of oxidized and metallic surface regions. This Cu metal embedded in oxidized matrix (MEOM) catalyst is consistent with observations that Cu2O-based electrodes improve performance. However, we show that a fully oxidized matrix (FOM) model would not explain the experimentally observed performance boost, and we show that the FOM is not stable under CO2 reduction conditions. This electrostatic tension between the Cu+ and Cu0 surface sites responsible for the MEOM mechanism suggests a unique strategy for designing more efficient and selective electrocatalysts for CO2RR to valuable chemicals (HCOx), a critical need for practical environmental and energy applications.
Publisher URL: http://feedproxy.google.com/~r/Pnas-RssFeedOfEarlyEditionArticles/~3/V1yb_Z8Zfpw/1702405114.short
DOI: 10.1073/pnas.1702405114
Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.
Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.