3 years ago

Micro and nano hierachical structures of BiOI/activated carbon for efficient visible-light-photocatalytic reactions

Ming Shen, Chuanbao Cao, Xiaoge Wu, Kun Jiang, Jianhua Hou, Faryal Idrees, Rui Wei
Constructing the heterojunctions or designing the novel nanostructures are thought as effective methods to improve photocatalytic activities of semiconductors. Herein, a one-step green route was developed to fabricate bismuth oxyiodide/activated carbon (BiOI/C) composite. The prepared BiOI/C exhibit obviously red shifts and increased absorption range of visible light. The presence of Bi-C bonds confirms the heterojunction, on account of which the BiOI nanosheets tightly grew on the surface of carbon and subsequently provided the hierarchical structure, sufficient interfacial interaction and high specific surface area. Significantly, the sufficient interracial interaction is beneficial to the detachment of electrons (e)-holes (h+) pairs and the Bi-C bonds work like a bridge to rapidly transmit the e from BiOI to carbon. What’s more, the hierarchical structure of BiOI/C efficiently shortened the diffusion pathways of pollutants and the high SBET provided more exposed reaction sites. Benefiting from multiple synergistic effects, the as-prepared BiOI/C exhibited enhanced photocatalytic activities in degrading Rhodamine B (RhB) solution under visible light irradiation. The degradation rate of optimized BiOI/C reaches up to 95% in 120 min, and the efficiency is 3.36 times higher than pure BiOI. This study provides a promising strategy that activated carbon can be utilized in highly-efficiency photocatalysts.

Publisher URL: https://www.nature.com/articles/s41598-017-12266-x

DOI: 10.1038/s41598-017-12266-x

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.