Dense Intra-adipose Sympathetic Arborizations Are Essential for Cold-Induced Beiging of Mouse White Adipose Tissue

Summary
Efferent signals from the central nervous system represent a key layer of regulation of white adipose tissue (WAT). However, the mechanism by which efferent neural signals control WAT metabolism remains to be better understood. Here, we exploit the volume fluorescence-imaging technique to visualize the neural arborizations in mouse inguinal WAT at single-fiber resolution. The imaging reveals a dense network of sympathetic arborizations that had been previously undetected by conventional methods, with sympathetic fibers being in close apposition to > 90% of adipocytes. We demonstrate that these sympathetic fibers originate from the celiac ganglia, which are activated by cold challenge. Sympathetic-specific deletion of TrkA receptor or pharmacologic ablation by 6-hydroxydopamine abolishes these intra-adipose arborizations and, as a result, cold-induced beiging of inguinal WAT. Furthermore, we find that local sympathetic arborizations function through beta-adrenergic receptors in this beiging process. These findings uncover an essential link connecting efferent neural signals with metabolism of individual adipocytes.
Publisher URL: http://www.cell.com/cell-metabolism/fulltext/S1550-4131(17)30501-6
DOI: 10.1016/j.cmet.2017.08.016
Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.
Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.