4 years ago

Disintegration of Nannochloropsis sp. cells in an improved turbine bead mill

Disintegration of Nannochloropsis sp. cells in an improved turbine bead mill
The Nannochloropsis sp. cells in aqueous solution were disintegrated in an improved bead mill with turbine agitator. The disintegration rates of cell samples disrupted under various operating parameters (i.e., circumferential speed, bead size, disintegration time, and cell concentration) were analyzed. An experimental strategy to optimize the parameters affecting the cell disintegration process was proposed. The results show that Nannochloropsis sp. cells can be effectively disintegrated in the turbine stirred bead mill under the optimum condition (i.e., circumferential speed of 2.3m/s, concentration of 15vol.%, disintegration time of 40min and bead size of 0.3–0.4mm). The disintegration mechanism was discussed via the selection and breakage functions from population balance modelling. It is revealed that the impact and compression effects of stirring beads are more effective for the disruption of coarser fraction of cells, and the shear effect dominates the production of finer fractions of disintegrated cells.

Publisher URL: www.sciencedirect.com/science

DOI: S0960852417314608

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.