5 years ago

A Single-Step Electrochemical Synthesis of Luminescent WS2 Quantum Dots

A Single-Step Electrochemical Synthesis of Luminescent WS2 Quantum Dots
Vijayamohanan K. Pillai, Athira Anil, Manikoth Shaijumon, Manila O. Valappil, Subbiah Alwarappan
Transition-metal dichalcogenide quantum dots (TMDQDs) with few layers are in the forefront of recent research on tailored 2D layered materials owing to their unique band structure. Such quantum dots (QDs) draw wide interest as potential candidates for components in optoelectronic devices. Although a few attempts towards single step synthesis of MoS2 QDs have been demonstrated, limited methods are available for WS2 QDs. Herein, we demonstrate a one-step electrochemical synthesis of luminescent WS2 QDs from their bulk material. This is achieved by a synergistic effect of perchlorate intercalation in non-aqueous electrolyte and the applied electric field. The average size of the WS2 QDs is 3  ±1 nm (N=102) with few layers. The QDs show a higher photoluminescence (PL) quantum efficiency (5 %) and exhibit an excitation wavelength-dependent photoluminescence. This unprecedented electrochemical avenue offers a strategy to synthesize size tunable WS2 nanostructures, which have been systematically investigated by various characterization techniques such as transmission electron microscopy (TEM), photoluminescence and UV/Vis spectroscopies, and X-ray diffraction (XRD). Time-dependent TEM investigations revealed that time plays a vital role in this electrochemical transformation. This electrochemical transformation provides a facile method to obtain WS2 QDs from their bulk counterpart, which is expected to have a greater impact on the design and development of nanostructures derived from 2D materials. Going dotty: Single-step electrochemical synthesis of WS2 quantum dots at room temperature.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/chem.201701277

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.