5 years ago

High-Throughput Optical Imaging and Spectroscopy of One-Dimensional Materials

High-Throughput Optical Imaging and Spectroscopy of One-Dimensional Materials
Cheng Chen, Can Liu, Jin Zhang, Fengrui Yao, Kaihui Liu, Feng Wang
Direct visualization of one-dimensional (1D) materials under an optical microscope in ambient conditions is of great significance for their characterizations and applications. However, it is full of challenges to achieve such goal due to their relative small size (ca. 1 nm in diameter) in the optical-diffraction-limited laser spot (ca. 1 μm in diameter). In this Concept article, we introduce a polarization-based optical homodyne detection method that can be used as a general strategy to obtain high-throughput, real-time, optical imaging and in situ spectroscopy of polarization-inhomogeneous 1D materials. We will use carbon nanotubes (CNTs) as an example to demonstrate the applications of such characterization with respect to the absorption signal of individual nanotubes, real-time imaging of individual nanotubes in devices, and statistical structure information of nanotube arrays. How to detect a single nanotube! In this concept article, the theory of homodyne optical signal detection is introduced, the construction of polarization-based homodyne microscope is described, and its applications for measurements on carbon nanotubes will be also discussed.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/chem.201700731

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.