5 years ago

DNA methylation and the preservation of cell identity

DNA methylation is a major epigenetic modification of vertebrate genomes that is mostly associated with transcriptional repression. During embryogenesis, DNA methylation together with other epigenetic factors plays an essential role in selecting and maintaining cell identity. Recent technological advances are now allowing for the exploration of this mark at unprecedented resolution. This has resulted in a wealth of studies describing the developmental roles of DNA methylation in various vertebrate model systems. It is now evident that in certain contexts DNA methylation can act as a key regulator of cell identity establishment, whereas in many other cases the quantity of DNA methylation will merely reflect other upstream regulatory changes. For example, a number of studies have indicated that DNA methylation might be dispensable for pluripotency stages of embryonic development. Nevertheless, targeted deposition and removal of DNA methylation by DNMTs and TET proteins, respectively, appears to be required for vertebrate gastrulation. Here we review the roles of DNA methylation in the establishment and maintenance of cell identity during development, with a special emphasis on insights obtained from in vivo studies.

Publisher URL: www.sciencedirect.com/science

DOI: S0959437X16301794

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.