3 years ago

Engineering cell identity: establishing new gene regulatory and chromatin landscapes

Cellular reprogramming can be achieved by ectopically expressing transcription factors that directly convert one differentiated cell type into another, bypassing embryonic states. A number of different cell types have been generated by such ‘direct lineage reprogramming’ methods, but their practical utility has been limited because, in most protocols, the resulting populations are often partially differentiated or incompletely specified. Here, we review mechanisms of lineage reprogramming by pioneer transcription factors, a unique class of transcriptional regulators that has the capacity to engage with silent chromatin to activate target gene regulatory networks. We assess the possible barriers to successful reprogramming in the context of higher-order chromatin landscape, considering how the mechanistic relationship between nuclear organization and cell identity will be crucial to unlocking the full potential of cell fate engineering.

Publisher URL: www.sciencedirect.com/science

DOI: S0959437X16301952

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.