4 years ago

Valsalva-induced elevation of intracranial pressure selectively decouples deoxygenated hemoglobin concentration from neuronal activation and functional brain imaging capability

During neuronal activation, neurovascular coupling leads to a local decrease of deoxygenated hemoglobin concentration (deoxy-Hb) and thus forms the basis of many functional brain mapping methods. In animals, an elevated intracranial pressure (ICP) can attenuate or even reverse this deoxy-Hb signaling. To study the effect of an elevated ICP on functional brain imaging in humans, we used different breathing tasks to modify ICP and analyzed the resulting effect on neurovascular coupling in the motor cortex. Functional near-infrared spectroscopy (fNIRS) was performed on 45 subjects during alternating conditions of finger tapping and resting state combined with four different breathing maneuvers (normal breathing (NB), breath holding without Valsalva maneuver (BH), Valsalva maneuver with 15 mm Hg forced expiratory pressure against resistance (V15) and Valsalva maneuver with 35 mm Hg forced expiratory pressure against resistance (V35)) in randomized order. With escalation of breathing tasks the median amplitude of the functional deoxy-Hb decrease during finger tapping became smaller. In contrast, functional oxygenated hemoglobin concentration (oxy-Hb) and total hemoglobin concentration (total-Hb) responses did not show a significant alteration. The functional oxy-Hb map evoked by finger tapping withstood Valsalva challenges while the functional deoxy-Hb map identified the correct motor cortex in normal breathing conditions only and did not reveal a functional contrast during Valsalva maneuvers. In summary, we conclude that during ICP elevation, deoxy-Hb is not a reliable basis for functional brain imaging. This suggests that the validity of BOLD fMRI during increased ICP might be impaired.

Publisher URL: www.sciencedirect.com/science

DOI: S1053811917307188

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.