5 years ago

Disruption of 5-HT2A-PDZ protein interaction differently affects the analgesic efficacy of SSRI, SNRI and TCA in the treatment of traumatic neuropathic pain in rats

Antidepressants remain one of the first line treatments prescribed to neuropathic pain patients despite their limited efficacy and/or their numerous side effects. More and more, pharmacotherapy for neuropathic pain has evolved towards the use of therapeutic combinations. The goal of the present study was to assess the efficacy of the combination of antidepressants - selective serotonin reuptake inhibitors and serotonin-noradrenaline reuptake inhibitors-with a peptide (TAT-2ASCV) able to disrupt the interaction between serotonin type 2A (5-HT2A) receptors and associated PDZ proteins. Mechanical hypersensitivity was assessed in sciatic nerve ligation-induced neuropathic pain in rats using paw pressure test after acute treatment with TAT-2ASCV alone or in combination with repeated treatment with fluoxetine or duloxetine or clomipramine. First, we validated the anti-hyperalgesic effect of TAT-2ASCV on mechanical hypersensitivity at the dose of 100 ng/rat (single i.t. injection). Second, using selective receptor antagonists, we found that the effect of TAT-2ASCV on mechanical hypersensitivity involves 5-HT2A as well as GABAA receptors. Finally, we showed that the association of TAT-2ASCV (100 ng, single i.t. injection) with fluoxetine (10 mg/kg, five i.p. injections) reveals its anti-hyperalgesic effect, while the association with duloxetine (1 mg/kg, five i.p. injections) or clomipramine (2.5 mg/kg, five i.p. injections) is only additive. Those results further accentuate the interest to develop small molecules acting like TAT-2ASCV in order to treat neuropathic pain as a monotherapy or in combination with antidepressants.

Publisher URL: www.sciencedirect.com/science

DOI: S0028390817303659

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.