4 years ago

Ferulic acid, a bioactive component of rice bran, improves oxidative stress and mitochondrial biogenesis and dynamics in mice and in human mononuclear cells

The aim of the study was to characterize the vascular effects of rice bran enzymatic extract (RBEE). ApoE−/− mice were fed a high-fat/cholesterol diet (HFD) or HFD supplemented with 5% RBEE for 21 weeks. RBEE prevented development of atherosclerotic plaques and oxidative stress in mouse aorta as well as the down-regulation of markers of mitochondrial biogenesis. Analysis of the bioactive components identified ferulic acid (FA) as responsible component. In healthy human volunteers, FA intake reduced NADPH oxidase activity, superoxide release, apoptosis and necrosis in peripheral blood mononuclear cells. Differentiation and proliferation of endothelial progenitor cells were improved. In summary, the study identifies FA as a major active component of rice bran, which improves expression of mitochondrial biogenesis and dynamics markers and reduces oxidative stress in a mouse model of vascular damage as well as in endothelial cells and human mononuclear cells.

Publisher URL: www.sciencedirect.com/science

DOI: S0955286316306052

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.