5 years ago

The role of mucus in cell-based models used to screen mucosal drug delivery

The role of mucus in cell-based models used to screen mucosal drug delivery
The increasing interest in developing tools to predict drug absorption through mucosal surfaces is fostering the establishment of epithelial cell-based models. Cell-based in vitro techniques for drug permeability assessment are less laborious, cheaper and address the concerns of using laboratory animals. Simultaneously, in vitro barrier models that thoroughly simulate human epithelia or mucosae may provide useful data to speed up the entrance of new drugs and new drug products into the clinics. Nevertheless, standard cell-based in vitro models that intend to reproduce epithelial surfaces often discard the role of mucus in influencing drug permeation/absorption. Biomimetic models of mucosae in which mucus production has been considered may not be able to fully reproduce the amount and architecture of mucus, resulting in biased characterization of permeability/absorption. In these cases, artificial mucus may be used to supplement cell-based models but still proper identification and quantification are required. In this review, considerations regarding the relevance of mucus in the development of cell-based epithelial and mucosal models mimicking the gastro-intestinal tract, the cervico-vaginal tract and the respiratory tract, and the impact of mucus on the permeability mechanisms are addressed. From simple epithelial monolayers to more complex 3D structures, the impact of the presence of mucus for the extrapolation to the in vivo scenario is critically analyzed. Finally, an overview is provided on several techniques and methods to characterize the mucus layer over cell-based barriers, in order to intimately reproduce human mucosal layer and thereby, improve in vitro/in vivo correlation.

Publisher URL: www.sciencedirect.com/science

DOI: S0169409X17301266

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.