5 years ago

Peptide modified mesenchymal stem cells as targeting delivery system transfected with miR-133b for the treatment of cerebral ischemia

Peptide modified mesenchymal stem cells as targeting delivery system transfected with miR-133b for the treatment of cerebral ischemia
Mesenchymal stem cells (MSCs) have been regarded as potential targeting vehicles and demonstrated to exert therapeutic benefits for brain diseases. Direct homing to diseased tissue is crucial for stem cell-based therapy. In this study, a peptide-based targeting approach was established to enhance cell homing to cerebral ischemic lesion. Palmitic acid–peptide painted onto the cell membrane was able to direct MSCs to ischemic tissues without any observed cell cytotoxicity and influence on differentiation, thus reducing accumulation of cells in peripheral organs and increasing engraftment of cells in the targeted tissues. With enhanced cell homing, MSCs were used to deliver miR-133b to increase the expression level of miR-133b in an ischemic lesion and further improve therapeutic effects. This study is the first to develop MSCs co-modified with targeting peptide and microRNAs as potential targeting therapeutic agents. This targeting delivery system is expected to be applicable to other cell types and other diseases aside from stroke.

Publisher URL: www.sciencedirect.com/science

DOI: S0378517317307810

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.