5 years ago

Mechanosensitive ion channels (MSICs) in articular nociceptors drive mechanical allodynia in osteoarthritis (OA)

Osteoarthritis (OA) is a disabling and highly prevalent condition affecting millions worldwide. Pain is the major complaint of OA patients and is presently inadequately managed. It manifests as mechanical allodynia, a painful response to innocuous stimuli such as joint movement. Allodynia is due in part to the sensitization of articular nociceptors to mechanical stimuli. These nociceptors respond to noxious mechanical stimuli applied to their terminals via the expression of depolarizing high-threshold mechanosensitive ion channels (MSICs) that convert painful mechanical forces into electrical signals. In this study, we examined the contribution of MSICs to mechanical allodynia in a mouse model of OA. Method Sodium mono-iodoacetate (MIA) was injected in the left knee of adult male Trpv1:Cre; GFP mice. Primary mechanical allodynia was monitored using the knee-bend test. Single-channel patch clamp electrophysiology was performed on visually-identified knee-innervating nociceptors. Dorsal horn neuronal activation was assessed by Fos immunoreactivity. Results In examining the gating properties of MSICs of naïve and OA mice, we discovered that their activation threshold is greatly reduced, causing their opening at significantly lower stimuli intensities. Consequently, nociceptors are activated by mild mechanical stimuli. These channels are reversibly inhibited by the selective MSIC inhibitor GsMTx4, and the intra-articular injection of this peptide significantly reduced the activation of dorsal horn nociceptive circuits and primary mechanical allodynia in OA mice. Conclusions These results suggest that MSICs are sensitized during OA and directly contribute to mechanical allodynia. They therefore represent potential therapeutic targets in the treatment of OA pain.

Publisher URL: www.sciencedirect.com/science

DOI: S1063458417311615

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.