3 years ago
A cell impedance-based real-time in vitro assay to assess the toxicity of amphotericin B formulations

Aerosolized liposomal amphotericin B (L-AmB) has been investigated as prophylaxis against invasive aspergillosis. However, the clinical results are controversial and some trials suggest that toxicity could be a limitation for wider use. Our aim was to assess the dynamics of cell toxicity induced in a human alveolar epithelial cell line (A549) after exposure to L-AmB (50 to 400 μg/ml) or amphotericin B deoxycholate (D-AmB; 50 to 200 μg/ml) by monitoring real-time A549 cell viability using an impedance-based technology. Results were expressed as cell index values integrating cell adhesion, proliferation, and survival. In parallel, the gene expression of proinflammatory cytokines was quantified at 6 and 24 h after drug addition by real-time RT-PCR on cell lysates. No sustained reduction of cell indexes was observed with L-AmB or empty liposomes, even at 400 μg/ml. Only the highest concentration tested of L-AmB (400 μg/ml) yielded transient significant 6-fold and 4-fold induction of TNF-α and IL-8 mRNAs, respectively. In contrast, D-AmB induced a decrease in cell indexes and only the 50 μg/ml concentration of D-AmB was followed by cell recovery, higher concentrations leading to cell death. Significant 4-fold, 7-fold and 3-fold inductions of TNF-α, IL-8 and IL-33 mRNAs were also observed at 6 h with 50 μg/ml of D-AmB. In conclusion, continuous cell impedance measurement showed no toxicity on overall cellular behavior although a slight proinflammatory cytokine expression is possible after L-AmB challenge. Real-time kinetics of cell impedance is an interesting tool for initial screening of cell toxicity.
Publisher URL: www.sciencedirect.com/science
DOI: S0041008X17303563
You might also like
Never Miss Important Research
Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.
Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.