3 years ago

Single nucleotide variations in cultured cancer cells: effect of mismatch repair

Single nucleotide variations in cultured cancer cells: effect of mismatch repair
We assessed single nucleotide variations (SNVs) between individual cells in two cancer cell lines; DU145, from brain metastasis of prostate tumor with deficient mismatch repair; and HT1080, a fibrosarcoma cell line. Clones of individual cells were isolated, and sequenced using Ion Ampliseq comprehensive cancer panel that covered the exomes of 409 oncogenes and tumor suppressor genes. Five clones of DU145 and four clones of HT1080 cells were analyzed. We found from 7 to 12 unique SNVs between DU145 clones, while HT1080 clones showed no more than one unique SNV. We then sub-cloned individual cells from some of these isolated clones of DU145 and HT1080 cells. The sub-clones were expanded from a single cell to approximately one million cells after about 20 cell divisions. The sub-clones of DU145 cells had from one to four new unique SNVs within the sequenced regions. No unique SNVs were found between sub-clones of HT1080 cells. Our data demonstrate that the extent of genetic variation at the single nucleotide level in cultured cancer cells is significantly affected by the status of the DNA mismatch repair system.

Publisher URL: www.sciencedirect.com/science

DOI: S0027510717300180

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.