3 years ago

Comprehensive Genomic Characterization of Upper Tract Urothelial Carcinoma

Upper urinary tract urothelial cancer (UTUC) may have unique etiologic and genomic factors compared to bladder cancer. Objective To characterize the genomic landscape of UTUC and provide insights into its biology using comprehensive integrated genomic analyses. Design, setting, and participants We collected 31 untreated snap-frozen UTUC samples from two institutions and carried out whole-exome sequencing (WES) of DNA, RNA sequencing (RNAseq), and protein analysis. Outcome measurements and statistical analysis Adjusting for batch effects, consensus mutation calls from independent pipelines identified DNA mutations, gene expression clusters using unsupervised consensus hierarchical clustering (UCHC), and protein expression levels that were correlated with relevant clinical variables, The Cancer Genome Atlas, and other published data. Results and limitations WES identified mutations in FGFR3 (74.1%; 92% low-grade, 60% high-grade), KMT2D (44.4%), PIK3CA (25.9%), and TP53 (22.2%). APOBEC and CpG were the most common mutational signatures. UCHC of RNAseq data segregated samples into four molecular subtypes with the following characteristics. Cluster 1: no PIK3CA mutations, nonsmokers, high-grade <pT2 tumors, high recurrences. Cluster 2: 100% FGFR3 mutations, low-grade tumors, tobacco use, noninvasive disease, no bladder recurrences. Cluster 3: 100% FGFR3 mutations, 71% PIK3CA, no TP53 mutations, five bladder recurrences, tobacco use, tumors all <pT2. Cluster 4: KMT2D (62.5%), FGFR3 (50%), TP53 (50%) mutations, no PIK3CA mutations, high-grade pT2+ disease, tobacco use, carcinoma in situ, shorter survival. We identified a novel SH3KBP1-CNTNAP5 fusion. Conclusions Mutations in UTUC occur at differing frequencies from bladder cancer, with four unique molecular and clinical subtypes. A novel SH3KBP1 fusion regulates RTK signaling. Further studies are needed to validate the described subtypes, explore their responses to therapy, and better define the novel fusion mutation. Patient summary We conducted a comprehensive study of the genetics of upper urinary tract urothelial cancer by evaluating DNA, RNA and protein expression in 31 tumors. We identified four molecular subtypes with distinct behaviors. Future studies will determine if these subtypes appear to have different responses to treatments.

We performed an integrated, comprehensive genomic characterization of upper tract urothelial carcinoma, evaluating DNA, RNA, and protein expression. We identified a novel fusion mutation that regulates RTK signaling, and characterized four molecular subtypes that appear to have distinct clinical behaviors.

Publisher URL: www.sciencedirect.com/science

DOI: S0302283817304888

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.