3 years ago

Quantification accuracy of neuro-oncology PET data as a function of emission scan duration in PET/MR compared to PET/CT

To evaluate and compare the effect of reduced acquisition time, as a surrogate of injected activity, on the PET quantification accuracy in PET/CT and PET/MR imaging. Methods Twenty min 18F-FDG phantom measurements and 10min 18F-FET brain scans were acquired in a Biograph-True-Point-True-View PET/CT (n=8) and a Biograph mMR PET/MR (n=16). Listmode data were repeatedly split into frames of 1min to 10min length and reconstructed using two different reconstruction settings of a 3D-OSEM algorithm: with post-filtering (“OSEM”), and without post-filtering but with resolution recovery (“PSF”). Recovery coefficients (RCmax, RCA50) and standard uptake values (SUVmax, SUVA50) were evaluated. Results RCmax (phantom) and SUVmax (patients) increased significantly when reducing the frame duration. Significantly lower deviations were observed for RCA50 and SUVA50, respectively, making them more appropriate to compare PET studies at different number of counts. No statistical significant differences were observed when using post-filtering and reducing the frame time to 4min (RCA50, reference 20min, phantom) and to 3min (SUVA50, reference 10min, patients). Conclusions For hybrid aminoacid brain imaging, frame duration (or injected activity) can potentially be reduced to 30% of the standard used in clinical routine without significant changes on the quantification accuracy of the PET images if adequate reconstruction settings and quantitative measures are used. Frame times below 4min in the NEMA phantom are not advisable to obtain quantitative and reproducible measures.

Publisher URL: www.sciencedirect.com/science

DOI: S0720048X17303431

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.