3 years ago

Slow AMPAR Synaptic Transmission Is Determined by Stargazin and Glutamate Transporters

Slow AMPAR Synaptic Transmission Is Determined by Stargazin and Glutamate Transporters
Gabriel E. Romero, Hsin-Wei Lu, Laurence O. Trussell, Timothy S. Balmer

Summary

AMPARs mediate the briefest synaptic currents in the brain by virtue of their rapid gating kinetics. However, at the mossy fiber-to-unipolar brush cell synapse in the cerebellum, AMPAR-mediated EPSCs last for hundreds of milliseconds, and it has been proposed that this time course reflects slow diffusion from a complex synaptic space. We show that upon release of glutamate, synaptic AMPARs were desensitized by transmitter by >90%. As glutamate levels subsequently fell, recovery of transmission occurred due to the presence of the AMPAR accessory protein stargazin that enhances the AMPAR response to low levels of transmitter. This gradual increase in receptor activity following desensitization accounted for the majority of synaptic transmission at this synapse. Moreover, the amplitude, duration, and shape of the synaptic response was tightly controlled by plasma membrane glutamate transporters, indicating that clearance of synaptic glutamate during the slow EPSC is dictated by an uptake process.

Publisher URL: http://www.cell.com/neuron/fulltext/S0896-6273(17)30786-9

DOI: 10.1016/j.neuron.2017.08.043

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.