4 years ago

Universal representations of evaporation modes in sessile droplets

Lalit Bansal, Abhishek Tyagi, Saksham Sharma, Saptarshi Basu, Rishabh Hans, Angkur Jyoti Dipanka Shaikeea

by Angkur Jyoti Dipanka Shaikeea, Saptarshi Basu, Abhishek Tyagi, Saksham Sharma, Rishabh Hans, Lalit Bansal

In this work, we provide a simple method to represent the contact line dynamics of an evaporating sessile droplet. As a droplet evaporates, two distinct contact line dynamics are observed. They are collectively known as modes of evaporation, namely Constant Contact Radius (CCR) and Constant Contact Angle (CCA). Another intermediate mode—Stick-Slide (SS) or mixed mode is also commonly observed. In this article, we are able to provide a graphical representation to these modes (named as MOE plot), which is visually more comprehensive especially for comparative studies. In addition, the method facilitates quantitative estimation for mode of evaporation (named as MOE fraction or MOEf), which doesn’t exist in literature. Thus, various substrates can now be compared based on mode of evaporation (or contact line dynamics), which are governed by fluid property and surface characteristics.

Publisher URL: http://journals.plos.org/plosone/article

DOI: 10.1371/journal.pone.0184997

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.