5 years ago

High-performance lithium-sulfur batteries based on self-supporting graphene/carbon nanotube foam@sulfur composite cathode and quasi-solid-state polymer electrolyte

High-performance lithium-sulfur batteries based on self-supporting graphene/carbon nanotube foam@sulfur composite cathode and quasi-solid-state polymer electrolyte
The dissolution and shuttle of the intermediate lithium polysulfides are major issues which restrict practicality of lithium-sulfur batteries. Herein, self-supporting graphene/acid-treated multi-walled carbon nanotube organic foam-supported sulfur (oGCTF@S) composites are fabricated by solvothermal reaction followed by electrochemical deposition. The oGCTF@S composites can provide high electronic conductivity and much void space for accommodating volume change of sulfur and confine dissolution of the polysulfides by physical adsorption. In addition, a novel quasi-solid-state polymer electrolyte (QPE) of poly(butyl acrylate)/poly(ethylene glycol) diacrylate (P(BA-co-PEGDA))/LiTFSI-DOL/DME is prepared to further suppress the polysulfides shuttle through chemical adsorption with oxygen-containing functional groups. The lithium–sulfur battery assembled by oGCTF@S composites cathode and QPE shows a high initial discharge capacity of 1033mAhg−1, and the capacity can retain 834mAhg−1 after 200 cycles at 0.1C, which is much more stable than that with the commercial separator and liquid electrolyte (LE).

Publisher URL: www.sciencedirect.com/science

DOI: S1385894717315759

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.