5 years ago

Identifying novel factor XIIa inhibitors with PCA-GA-SVM developed vHTS models

Identifying novel factor XIIa inhibitors with PCA-GA-SVM developed vHTS models
There currently is renewed interest in blood clotting Factor XII as a potential target for thrombosis inhibition. Historically untargeted, there is little drug information with which to start drug candidate searches. Typical high-throughput screening can identify potential drug candidates, but is inefficient. Virtual high-throughput screening can be used to raise efficiency by focusing experimental efforts on compounds predicted to be active and is applied here to identify new Factor XIIa inhibitors. We combine principal component analysis, genetic algorithm and support vector machine to create the models used in the virtual high-throughput screening. In this work, experimental data from a PubChem Bioassay was used to train predictive models of Factor XIIa inhibition activity. The models created were then used to virtually screen the entire 72 million PubChem Compound database. Experimental validation of select candidates identified by this process resulted in a 42.9% hit-rate in the first-pass and 100% hit-rate in the second-pass, suggesting the effectiveness of the approach.

Publisher URL: www.sciencedirect.com/science

DOI: S0223523417306670

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.