5 years ago

Alkylated Selenophene-Based Ladder-Type Monomers via a Facile Route for High-Performance Thin-Film Transistor Applications

Alkylated Selenophene-Based Ladder-Type Monomers via a Facile Route for High-Performance Thin-Film Transistor Applications
Thomas D Anthopoulos, Christopher R. McNeill, Martin Heeney, Eliot Gann, Thomas Hodsden, Yang Han, Anthony S. R. Chesman, Zhuping Fei
We report the synthesis of two new selenophene-containing ladder-type monomers, cyclopentadiselenophene (CPDS) and indacenodiselenophene (IDSe), via a 2-fold and 4-fold Pd-catalyzed coupling with a 1,1-diborylmethane derivative. Copolymers with benzothiadiazole were prepared in high yield by Suzuki polymerization to afford materials which exhibited excellent solubility in a range of nonchlorinated solvents. The CPDS copolymer exhibited a band gap of just 1.18 eV, which is among the lowest reported for donor–acceptor polymers. Thin-film transistors were fabricated using environmentally benign, nonchlorinated solvents, with the CPDS and IDSe copolymers exhibiting hole mobility up to 0.15 and 6.4 cm2 V–1 s–1, respectively. This high performance was achieved without the undesirable peak in mobility often observed at low gate voltages due to parasitic contact resistance.

Publisher URL: http://dx.doi.org/10.1021/jacs.7b03099

DOI: 10.1021/jacs.7b03099

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.