5 years ago

CoQ 0 -induced mitochondrial PTP opening triggers apoptosis via ROS-mediated VDAC1 upregulation in HL-60 leukemia cells and suppresses tumor growth in athymic nude mice/xenografted nude mice

Hsin-Ling Yang, You-Cheng Hseu, Varadharajan Thiyagarajan, Ting-Tsz Ou

Abstract

Coenzyme Q (CoQ) analogs with variable numbers of isoprenoid units have been demonstrated as anticancer and antioxidant/pro-oxidant molecules. This study examined the in vitro and in vivo antitumor and apoptosis activities of CoQ0 (2,3-dimethoxy-5-methyl-1,4-benzoquinone, zero isoprenoid side-chains) through upregulation of the Voltage‐dependent anion channel 1 (VDAC1) signaling pathway on human promyelocytic leukemia. CoQ0 (0–40 μg/mL) treatment significantly reduced HL-60 cell viability, and up-regulated mitochondrial VDAC1 expression. CoQ0 treatment triggers intracellular ROS generation, calcium release, ΔΨm collapse and PTP opening in HL-60 cells. CoQ0 treatment induced apoptosis, which was associated with DNA fragmentation, cytochrome c release, caspase-3 and PARP activation, and Bax/Bcl-2 dysregulation. Annexin V-PI staining indicated that CoQ0 promotes late apoptosis. Furthermore, the blockade of CoQ0-induced ROS production by antioxidant NAC pretreatment substantially attenuated CoQ0-induced apoptosis. The activation of p-GSK3β expression, cyclophilin D inhibition, and p53 activation through ROS are involved in CoQ0-induced HL-60 apoptotic cell death. Notably, ROS-independent p38 activation is involved in CoQ0-mediated apoptosis in HL-60 cells. In addition, the silencing of VDAC1 also prevented CoQ0-induced mitochondrial translocation of Bax, activation of caspase-3, and reduction in Bcl-2. Intriguingly, VDAC1 silencing did not prevent ROS production induced by CoQ0, which in turn indicates that CoQ0 induced ROS-mediated VDAC1 and then mitochondrial apoptosis in HL-60 cells. In vivo results revealed that CoQ0 is effective in delaying tumor incidence and reducing the tumor burden in HL-60-xenografted nude mice. Taken together, CoQ0 could be a promising anticancer agent for the treatment of human promyelocytic leukemia through upregulation of VDAC1 signaling pathways.

Publisher URL: https://link.springer.com/article/10.1007/s00204-017-2050-6

DOI: 10.1007/s00204-017-2050-6

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.