5 years ago

Electrocatalytic Water Oxidation by a Homogeneous Copper Catalyst Disfavors Single-Site Mechanisms

Electrocatalytic Water Oxidation by a Homogeneous Copper Catalyst Disfavors Single-Site Mechanisms
Keaton M. Wiley, Peter E. VanNatta, Kenneth M. Light, Sara J. Koepke, Matthew T. Kieber-Emmons
Deployment of solar fuels derived from water requires robust oxygen-evolving catalysts made from earth abundant materials. Copper has recently received much attention in this regard. Mechanistic parallels between Cu and single-site Ru/Ir/Mn water oxidation catalysts, including intermediacy of terminal Cu oxo/oxyl species, are prevalent in the literature; however, intermediacy of late transition metal oxo species would be remarkable given the high d-electron count would fill antibonding orbitals, making these species high in energy. This may suggest alternate pathways are at work in copper-based water oxidation. This report characterizes a dinuclear copper water oxidation catalyst, {[(L)Cu(II)]2-(μ-OH)2}(OTf)2 (L = Me2TMPA = bis((6-methyl-2-pyridyl)methyl)(2-pyridylmethyl)amine) in which water oxidation proceeds with high Faradaic efficiency (>90%) and moderate rates (33 s–1 at ∼1 V overpotential, pH 12.5). A large kinetic isotope effect (kH/kD = 20) suggests proton coupled electron transfer in the initial oxidation as the rate-determining step. This species partially dissociates in aqueous solution at pH 12.5 to generate a mononuclear {[(L)Cu(II)(OH)]}+ adduct (Keq = 0.0041). Calculations that reproduce the experimental findings reveal that oxidation of either the mononuclear or dinuclear species results in a common dinuclear intermediate, {[LCu(III)]2-(μ-O)2}2+, which avoids formation of terminal Cu(IV)═O/Cu(III)–O intermediates. Calculations further reveal that both intermolecular water nucleophilic attack and redox isomerization of {[LCu(III)]2-(μ-O)2}2+ are energetically accessible pathways for O–O bond formation. The consequences of these findings are discussed in relation to differences in water oxidation pathways between Cu catalysts and catalysts based on Ru, Ir, and Mn.

Publisher URL: http://dx.doi.org/10.1021/jacs.7b03278

DOI: 10.1021/jacs.7b03278

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.