3 years ago

Pressure-Enabled Synthesis of Hetero-Dimers and Hetero-Rods through Intraparticle Coalescence and Interparticle Fusion of Quantum-Dot-Au Satellite Nanocrystals

Pressure-Enabled Synthesis of Hetero-Dimers and Hetero-Rods through Intraparticle Coalescence and Interparticle Fusion of Quantum-Dot-Au Satellite Nanocrystals
Katie Hills-Kimball, Rui Tan, Yasutaka Nagaoka, Yin Fang, Long Yu, Zhongwu Wang, Kelly Wang, Hua Zhu, Ou Chen, Ruipeng Li
This report presents the fabrication and pressure-driven processing of heterostructural nanocrystal superlattices (HNC-SLs) self-assembled from quantum-dot-Au (QD-Au) satellite-type HNCs. In situ small/wide-angle X-ray scattering and electron microscopic measurements showed that the HNC-SLs underwent structural transformation at both atomic- and mesoscales during the pressure processing. Upon deviatoric stress-driven orientational migration, the intraparticle coalescence of Au satellites at QD surfaces transforms individual HNCs into heterodimers, whereas the interparticle fusion drives assembled HNCs into ordered heterorod arrays. These results demonstrate high-pressure-processing as a clean and fast means for conversion of HNCs into novel heteromaterials that are difficult to achieve through conventional synthetic routes.

Publisher URL: http://dx.doi.org/10.1021/jacs.7b04018

DOI: 10.1021/jacs.7b04018

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.