5 years ago

Ultrafast Charge-Separation in Triphenylamine-BODIPY-Derived Triads Carrying Centrally Positioned, Highly Electron-Deficient, Dicyanoquinodimethane or Tetracyanobutadiene Electron-Acceptors

Ultrafast Charge-Separation in Triphenylamine-BODIPY-Derived Triads Carrying Centrally Positioned, Highly Electron-Deficient, Dicyanoquinodimethane or Tetracyanobutadiene Electron-Acceptors
Michael B. Thomas, Prabhat Gautam, Rajneesh Misra, Francis D'Souza
A series of new triphenylamine (TPA)-substituted BODIPYs 1–3 have been designed and synthesized through the Pd-catalysed Sonogashira cross-coupling and [2+2] cycloaddition-retroelectrocyclization reactions in good yields. This procedure yielded highly electron-deficient tetracyanobutadiene (TCBD) or dicyanoquinodimethane (DCNQ) electron-acceptor units centrally located at the TPA-BODIPY system. As a consequence, significant perturbation of the photonic and electronic properties was observed. The triads 2 and 3 showed red-shifted absorption, in addition to a strong charge-transfer-type absorption in the case of 3. The electrochemical studies revealed multi-redox processes involving the TPA, TCBD or DCNQ and BODIPY entities. The computational studies were performed at the B3LYP/6-31G** level to elucidate the geometry and electronic structures. An energy level diagram established for triads 2 and 3 revealed that the photoinduced charge-separation from the 1BODIPY* is thermodynamically possible. In addition, charge transfer from TPA to TCBD in 2 and DCNQ in 3 was also possible. These charge transfer mechanisms were confirmed by photochemical studies performed using time-resolved emission and femtosecond-transient-absorption studies in solvents of varying polarity. Ultrafast charge-separation has been witnessed in these closely spaced, strongly interacting triads. The charge-separated state returned to the ground state without populating the 3BODIPY*. In search of stronger electron-acceptors: Newly synthesized molecular triads carrying centrally positioned dicyanoquinodimethane or tetracyanobutadiene electron-acceptors are shown to promote ultrafast charge-separation and recombination.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/chem.201701604

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.