4 years ago

Conformational Entropy as Collective Variable for Proteins

Conformational Entropy as Collective Variable for Proteins
Omar Valsson, Michele Parrinello, Ferruccio Palazzesi
Many enhanced sampling methods rely on the identification of appropriate collective variables. For proteins, even small ones, finding appropriate descriptors has proven challenging. Here we suggest that the NMR S2 order parameter can be used to this effect. We trace the validity of this statement to the suggested relation between S2 and conformational entropy. Using the S2 order parameter and a surrogate for the protein enthalpy in conjunction with metadynamics or variationally enhanced sampling, we are able to reversibly fold and unfold a small protein and draw its free energy at a fraction of the time that is needed in unbiased simulations. We also use S2 in combination with the free energy flooding method to compute the unfolding rate of this peptide. We repeat this calculation at different temperatures to obtain the unfolding activation energy.

Publisher URL: http://dx.doi.org/10.1021/acs.jpclett.7b01770

DOI: 10.1021/acs.jpclett.7b01770

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.