3 years ago

Heat- and Gas-Induced Transformation in CH3NH3PbI3 Perovskites and Its Effect on the Efficiency of Solar Cells

Heat- and Gas-Induced Transformation in CH3NH3PbI3 Perovskites and Its Effect on the Efficiency of Solar Cells
Sylwia Ptasinska, Weixin Huang, Subha Sadhu
Following the remarkable success of the application of CH3NH3PbI3 perovskites in photovoltaics, a great focus has been placed on their stability to improve their optoelectronic properties and seek commercial production. To gain a better understanding of their thermal stability, we investigated the chemical, morphological, and photovoltaic transformations of CH3NH3PbI3 perovskites under elevated temperatures and various controlled atmospheric conditions (vacuum, 1 mbar O2, and 1 mbar H2O). A temperature-dependent study showed that CH3NH3PbI3 decomposed to PbI2 with the release of CH3NH2 and HI under low-temperature annealing (25–150 °C). Further annealing resulted in the formation of metallic lead (Pb0) under vacuum and Pb oxides and hydroxides under an O2 or H2O pressure. Moreover, the sublimation of Pb-based compounds occurred at temperatures above 150 °C, causing structural changes, which resulted in a decrease in the power conversion efficiency of the solar cell. A time-dependent study showed that, compared with vacuum conditions, the addition of O2 or H2O accelerated the degradation of the perovskite films.

Publisher URL: http://dx.doi.org/10.1021/acs.chemmater.7b03243

DOI: 10.1021/acs.chemmater.7b03243

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.