5 years ago

“On the Dot”—The Timing of Self-Assembled Growth to the Quantum Scale

“On the Dot”—The Timing of Self-Assembled Growth to the Quantum Scale
Caroline S. Lee, Sanjiv Sonkaria, Sung-Hoon Ahn, Varsha Khare
Understanding the complex world of material growth and tunability has mystified the minds of material scientists and has been met with increasing efforts to close the gap between controllability and applicability. The reality of this journey is frustratingly tortuous but is being eased through better conceptual appreciation of metal crystalline frameworks that originate from shape and size dependent solvent responsive growth patterns. The quantum confinement of TiO2 in the range of 0.8–2 nm has been synthetically challenging to achieve but lessons from biomineralization processes have enabled alternative routes to be explored via self-induced pre-nucleation events. In driving this concept, we have incorporated many of these key features integrating aspects of low temperature annealing at the interface of complex heterogeneous nucleation between hard and soft materials to arrest the biomimetic amorphous phase of TiO2 to a tunable crystalline quantumized state. The stabilization of metastable states of quantum sized TiO2 driven by kinetic and thermodynamic processes show hallmarks of biomineralized controlled events that suggest the inter-play between new pathways and interfacial energies that preferentially favor low dimensionality at the quantum scale. This provides the potential to re-direct synthetic assemblies under tightly controlled parameters to generate a host of new materials with size, shape and anisotropic properties as smart stimuli responsive materials. These new stabilities leading to the growth arrest of TiO2 are discussed in terms of molecular interactions and structural frameworks that were previously inaccessible via conventional routes. There exists an undiscovered parallel between synthetic and biomineralized routes enabling unprecedented access to the availability and tunability of novel quantum confined materials. The parametrics of complex material design at the crossroads of synthetically and biologically driven processes is only now surfacing. Case in question: Accessibility to new synthetic materials to sub-nanometer levels to quantum scales is not trivial, in this case it is TiO2. The evolution of some biominerals with equilibrium morphologies stabilized by ligand compartmentalization enabling control over shape and size reveals mechanistic clues to engineer biomimetic approaches. This establishes a new route to material tunability and accessibility to quantum sub-bands that show a profound interdependence on anisotropic growth patterns.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/chem.201604994

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.