3 years ago

A New Laser-Processing Strategy for Improving Enamel Erosion Resistance.

Poprawe R, Stollenwerk J, Jansen P, Wollgarten S, Fischer H, Liebegall S, Bilandzic M, Meyer-Lueckel H, Esteves-Oliveira M
In the present study, a new automatic laser-processing strategy allowing standardized irradiation of natural tooth areas was investigated. The objective was to find a combination of laser parameters that could cause over a 600°C temperature increase at the enamel surface while not damaging enamel, avoiding temperature change above 5.5°C in the pulp and increasing enamel erosion resistance. Seventy-seven bovine enamel samples were randomly divided into 6 laser groups and 1 negative control (C/no treatment/ n = 11). A scanning strategy (7 × 3 mm) was used for the CO2 laser treatment (λ = 10.6 µm, 0.1-18 J/cm2) with different pulse durations-namely, 20 µs (G20), 30 µs (G30), 55 µs (G55), and 490 µs (G490), as well as 2 modified pulse distances (G33d, G40d). Measurements of temperature change were performed at the surface (thermal camera/50 Hz), at the underside (thermocouples), and at the pulp chamber using a thermobath and human molars ( n = 10). In addition, histology and X-ray diffraction (XRD/ n = 10) were performed. Erosion was tested using an erosive cycling over 6 d, including immersion in citric acid (2 min/0.05 M/pH = 2.3) 6 times daily. Surface loss was measured using a profilometer and statistical analysis with a 2-way repeated-measures analysis of variance (α = 0.05). Only G20 fulfilled the temperature requirements at the surface (619 ± 21.8°C), at the underside (5.3 ± 1.4°C), and at the pulp (2.0 ± 1.0°C), and it caused no mineral phase change and significant reduction of enamel surface loss (-13.2 ± 4.0 µm) compared to C (-37.0 ± 10.1 µm, P < 0.05). A laser-scanning strategy (20 µs/2 kHz/1.25 J/cm2, 3.4 mm/s) has been established that fulfilled the criteria for biological safety and significantly increased enamel erosion resistance (64%) in vitro.

Publisher URL: https://www.ncbi.nlm.nih.gov/pubmed/28665779

DOI: PubMed:28665779

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.