3 years ago

Duplicated or Hybridized Peptide Functional Domains Promote Oral Homeostasis.

Moffa EB, Siqueira WL, Machado MAAM, Serra Nunes PL, Mulyar Y, Johnson ND, Basiri T
Proteins that have existed for millions of years frequently contain repeats of functional domains within their primary structure, thereby improving their functional capacity. In the evolutionary young statherin protein contained within the in vivo-acquired enamel pellicle (AEP), we identified a single functional domain (DR9) located within the protein N-terminal portion that exhibits a higher affinity for hydroxyapatite and more efficient protection against enamel demineralization compared to other native statherin peptides. Thus, we tested the hypothesis that multiplication of functional domains of naturally occurring pellicle peptides amplifies protection against enamel demineralization. In addition, a specific amino acid sequence from histatin 3 (RR-14) was introduced to the hybrid peptides for further testing. Enamel specimens were sectioned to 150-µm thickness and randomly grouped as follows: DR9, DR9-DR9, DR9-RR14, statherin, histatin 1, or distilled water (control). After submersion for 2 h at 37°C, the specimens were placed in 2 mL demineralization solution for 12 d at 37°C. Upon sample removal, the remaining solution was subjected to colorimetric assays to determine the amount of calcium and phosphate released from each specimen. DR9-DR9 amplified protection against enamel demineralization when compared to single DR9 or statherin. Notably, the hybrid peptide DR9-RR14 demonstrated relatively strong protection when the antimicrobial property of these peptides was tested against Candida albicans and Streptococcus mutans. DR9-RR14 was able to maintain 50% of the antifungal activity compared with RR14 for C. albicans and similar values of S. mutans killing activity. This study has pioneered the functional exploration of the natural peptide constituents of the AEP and their evolution-inspired engineered peptides. The knowledge obtained here may provide a basis for the development of stable (proteinase-resistant) synthetic peptides for therapeutic use against dental caries, dental erosion, and/or oral candidiasis.

Publisher URL: https://www.ncbi.nlm.nih.gov/pubmed/28511604

DOI: PubMed:28511604

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.