5 years ago

Origin of the Intrinsic Fluorescence of the Green Fluorescent Protein

Origin of the Intrinsic Fluorescence of the Green Fluorescent Protein
Annette Svendsen, Lars H. Andersen, Henrik B. Pedersen, Hjalte V. Kiefer, Anastasia V. Bochenkova
Green fluorescent protein, GFP, has revolutionized biology, due to its use in bioimaging. It is widely accepted that the protein environment makes its chromophore fluoresce, whereas the fluorescence is completely lost when the native chromophore is taken out of GFP. By the use of a new femtosecond pump–probe scheme, based on time-resolved action spectroscopy, we demonstrate that the isolated deprotonated GFP chromophore can be trapped in the first excited state when cooled to 100 K. The trapping is shown to last for 1.2 ns, which is long enough to establish conditions for fluorescence and consistent with calculated trapping barriers in the electronically excited state. Thus, GFP fluorescence is traced back to an intrinsic chromophore property, and by improving excited-state trapping, protein interactions enhance the molecular fluorescence.

Publisher URL: http://dx.doi.org/10.1021/jacs.7b04987

DOI: 10.1021/jacs.7b04987

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.