5 years ago

Water Vapor Sorption in Hybrid Pillared Square Grid Materials

Water Vapor Sorption in Hybrid Pillared Square Grid Materials
Michael J. Zaworotko, Daniel O’Nolan, Amrit Kumar
We report water vapor sorption studies on four primitive cubic, pcu, pillared square grid materials: SIFSIX-1-Cu, SIFSIX-2-Cu-i, SIFSIX-3-Ni, and SIFSIX-14-Cu-i. SIFSIX-1-Cu, SIFSIX-3-Ni, and SIFSIX-14-Cu-i were observed to exhibit negative water vapor adsorption at ca. 40–50% relative humidity (RH). The negative adsorption is attributed to a water-induced phase transformation from a porous pcu topology to nonporous sql and sql-c* topologies. Whereas the phase transformation of SIFSIX-1-Cu was found to be irreversible, SIFSIX-3-Ni could be regenerated by heating and can therefore be recycled. In contrast, SIFSIX-2-Cu-i, which is isostructural with SIFSIX-14-Cu-i, exhibited a type V isotherm and no phase change. SIFSIX-2-Cu-i was observed to retain both structure and gas sorption properties after prolonged exposure to heat and humidity. The hydrolytic stability of SIFSIX-2-Cu-i in comparison to its structural counterparts is attributed to structural features and therefore offers insight into the design of hydrolytically stable porous materials.

Publisher URL: http://dx.doi.org/10.1021/jacs.7b01682

DOI: 10.1021/jacs.7b01682

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.