4 years ago

Ternary Gold Hydrides: Routes to Stable and Potentially Superconducting Compounds

Ternary Gold Hydrides: Routes to Stable and Potentially Superconducting Compounds
Roald Hoffmann, Martin Rahm, N. W. Ashcroft
In a search for gold hydrides, an initial discouraging result of no theoretical stability in any binary AuHn at P < 300 GPa was overcome by introducing alkali atoms as reductants. A set of AAuH2 compounds, A = Li, Na, K, Rb, and Cs, is examined; of these, certain K, Rb, and Cs compounds are predicted to be thermodynamically stable. All contain AuH2 molecular units and are semiconducting at P = 1 atm, and some form metallic and superconducting symmetrically bonded AuHAu sheets under compression. To induce metallicity by bringing the Au atoms closer together under ambient conditions, we examined alkaline earth ion substitution for two A, i.e., materials of composition AE(AuH2)2. For AE = Ba and Sr, the materials are already marginally metallic at P = 1 atm and the combination of high and low phonon frequencies and good electron–phonon coupling leads to reasonably high calculated superconducting transition temperatures for these materials.

Publisher URL: http://dx.doi.org/10.1021/jacs.7b04456

DOI: 10.1021/jacs.7b04456

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.