5 years ago

Hydropersulfides: H-Atom Transfer Agents Par Excellence

Hydropersulfides: H-Atom Transfer Agents Par Excellence
Jean-Philippe R. Chauvin, Derek A. Pratt, Markus Griesser
Hydropersulfides (RSSH) are formed endogenously via the reaction of the gaseous biotransmitter hydrogen sulfide (H2S) and disulfides (RSSR) and/or sulfenic acids (RSOH). RSSH have been investigated for their ability to store H2S in vivo and as a line of defense against oxidative stress, from which it is clear that RSSH are much more reactive to two-electron oxidants than thiols. Herein we describe the results of our investigations into the H-atom transfer chemistry of RSSH, contrasting it with the well-known H-atom transfer chemistry of thiols. In fact, RSSH are excellent H-atom donors to alkyl (k ∼ 5 × 108 M–1 s–1), alkoxyl (k ∼ 1 × 109 M–1 s–1), peroxyl (k ∼ 2 × 106 M–1 s–1), and thiyl (k > 1 × 1010 M–1 s–1) radicals, besting thiols by as little as 1 order and as much as 4 orders of magnitude. The inherently high reactivity of RSSH to H-atom transfer is based largely on thermodynamic factors; the weak RSS–H bond dissociation enthalpy (∼70 kcal/mol) and the associated high stability of the perthiyl radical make the foregoing reactions exothermic by 15–34 kcal/mol. Of particular relevance in the context of oxidative stress is the reactivity of RSSH to peroxyl radicals, where favorable thermodynamics are bolstered by a secondary orbital interaction in the transition state of the formal H-atom transfer that drives the inherent reactivity of RSSH to match that of α-tocopherol (α-TOH), nature’s premier radical-trapping antioxidant. Significantly, the reactivity of RSSH eclipses that of α-TOH in H-bond-accepting media because of their low H-bond acidity (α2H ∼ 0.1). This affords RSSH a unique versatility compared to other highly reactive radical-trapping antioxidants (e.g., phenols, diarylamines, hydroxylamines, sulfenic acids), which tend to have high H-bond acidities. Moreover, the perthiyl radicals that result are highly persistent under autoxidation conditions and undergo very rapid dimerization (k = 5 × 109 M–1 s–1) in lieu of reacting with O2 or autoxidizable substrates.

Publisher URL: http://dx.doi.org/10.1021/jacs.7b02571

DOI: 10.1021/jacs.7b02571

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.