5 years ago

Population-genomic inference of the strength and timing of selection against gene flow [Evolution]

Population-genomic inference of the strength and timing of selection against gene flow [Evolution]
Graham Coop, John H. Willis, Jessica P. Selby, Simon Aeschbacher

The interplay of divergent selection and gene flow is key to understanding how populations adapt to local environments and how new species form. Here, we use DNA polymorphism data and genome-wide variation in recombination rate to jointly infer the strength and timing of selection, as well as the baseline level of gene flow under various demographic scenarios. We model how divergent selection leads to a genome-wide negative correlation between recombination rate and genetic differentiation among populations. Our theory shows that the selection density (i.e., the selection coefficient per base pair) is a key parameter underlying this relationship. We then develop a procedure for parameter estimation that accounts for the confounding effect of background selection. Applying this method to two datasets from Mimulus guttatus, we infer a strong signal of adaptive divergence in the face of gene flow between populations growing on and off phytotoxic serpentine soils. However, the genome-wide intensity of this selection is not exceptional compared with what M. guttatus populations may typically experience when adapting to local conditions. We also find that selection against genome-wide introgression from the selfing sister species M. nasutus has acted to maintain a barrier between these two species over at least the last 250 ky. Our study provides a theoretical framework for linking genome-wide patterns of divergence and recombination with the underlying evolutionary mechanisms that drive this differentiation.

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.